Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = x + 3 \left ( x - 1 \right )$
$y = 6 - 4 \left ( 2 x + 3 \right )$
$x$-intercept
$\left ( \dfrac { 3 } { 4 } , 0 \right )$
$y$-intercept
$\left ( 0 , - 3 \right )$
$x$-intercept
$\left ( - \dfrac { 3 } { 4 } , 0 \right )$
$y$-intercept
$\left ( 0 , - 6 \right )$
$x+3 \left( x-1 \right) = 6-4 \left( 2x+3 \right)$
$x = - \dfrac { 1 } { 4 }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x }$
$4 x - 3 = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x }$
$ $ Organize the expression $ $
$4 x - 3 = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } = \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } = - 6 + 3$
$ $ Organize the expression $ $
$\color{#FF6800}{ 12 } \color{#FF6800}{ x } = - 6 + 3$
$12 x = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$ $ Add $ - 6 $ and $ 3$
$12 x = \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 12 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 4 } }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo