Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve the following
Answer
See the solving process
Graph
See details
$y = x ^ { 4 } - x ^ { 2 } - 20$
$y = 0$
$x$Intercept
$\left ( \sqrt{ 5 } , 0 \right )$, $\left ( - \sqrt{ 5 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 20 \right )$
$x = - \sqrt{ 5 } , \sqrt{ 5 } $
Calculate the value
$x ^ { 4 } - x ^ { 2 } - 20 = 0$
$ $ Solve $ $ $ $ the $ $ $ $ equation. $ $
$x = - \sqrt{ 5 } , \sqrt{ 5 } $
Solution search results
$x^{3}+x^{2}-20$ $=-0$
Algebra
Check solution
$∠$ $F$ From the sum $ot$ $x^{A}\left(2\right)-8$ with $3x-12$ subtract the sum $ofx-9$ with $3x-x^{A}\left(2\right)$ Multinlication takes place $\left(2\times A$ $\left(2\right)+5x+21\right)\left(x-$ $5\right)=$ #Please provide solution by using math formula.
10th-13th grade
Geometry
Check solution
Using the \emph{removal of first derivative} method, the differential equation \( \frac{d^{2}y} $\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$ $dx\right)+Qy=RN\right)$ is transformed as \). For, the differential equation \frac{d^{2}y} $\left(d^{n}\left(2\right)y\right)$ $dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the value of $\left(11\right)$
Calculus
Search count: 3,465
Check solution
$x^{2}+x-20=0$
10th-13th grade
Other
Check solution
$\left(x-1\right)^{23}+\left(x-1\right)^{13}$ $-20=0$
10th-13th grade
Other
Check solution
$1\right)x^{2}+x-20=0$ $3$
10th-13th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com