# Calculator search results

Formula
Graph
$y = x ^ { 3 } - 4 x ^ { 2 } + x + 6$
$y = 0$
$x$-intercept
$\left ( 3 , 0 \right )$, $\left ( 2 , 0 \right )$, $\left ( - 1 , 0 \right )$
$y$-intercept
$\left ( 0 , 6 \right )$
Derivative
$3 x ^ { 2 } - 8 x + 1$
Seconde derivative
$6 x - 8$
Local Minimum
$\left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } , - 4 \left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 2 } + \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 22 } { 3 } + \left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 3 } \right )$
Local Maximum
$\left ( \dfrac { 4 } { 3 } - \dfrac { \sqrt{ 13 } } { 3 } , - \dfrac { \sqrt{ 13 } } { 3 } - 4 \left ( \dfrac { 4 } { 3 } - \dfrac { \sqrt{ 13 } } { 3 } \right ) ^ { 2 } + \left ( \dfrac { 4 } { 3 } - \dfrac { \sqrt{ 13 } } { 3 } \right ) ^ { 3 } + \dfrac { 22 } { 3 } \right )$
Point of inflection
$\left ( \dfrac { 4 } { 3 } , \dfrac { 70 } { 27 } \right )$
$x ^{ 3 } -4x ^{ 2 } +x+6 = 0$
 그래프 보기 
Graph
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture