qanda-logo
search-icon
Symbol

Calculator search results

Solve the following
Answer
circle-check-icon
Graph
$y = x ^ { 3 } - 4 x ^ { 2 } + x + 6$
$y = 0$
$x$Intercept
$\left ( 3 , 0 \right )$, $\left ( 2 , 0 \right )$, $\left ( - 1 , 0 \right )$
$y$Intercept
$\left ( 0 , 6 \right )$
Derivative
$3 x ^ { 2 } - 8 x + 1$
Seconde derivative
$6 x - 8$
Local Minimum
$\left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } , - 4 \left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 2 } + \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 22 } { 3 } + \left ( \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 3 } \right )$
Local Maximum
$\left ( - \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } , - \dfrac { \sqrt{ 13 } } { 3 } - 4 \left ( - \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 2 } + \left ( - \dfrac { \sqrt{ 13 } } { 3 } + \dfrac { 4 } { 3 } \right ) ^ { 3 } + \dfrac { 22 } { 3 } \right )$
Point of inflection
$\left ( \dfrac { 4 } { 3 } , \dfrac { 70 } { 27 } \right )$
$x = - 1 , 2 , 3 $
Calculate the value
$x ^ { 3 } - 4 x ^ { 2 } + x + 6 = 0$
$ $ Solve $ $ $ $ the $ $ $ $ equation. $ $
$x = - 1 , 2 , 3 $
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture