# Calculator search results

Formula
Expand the expression
Factorize the expression
Organize equations using specific formulas
$x ^{ 3 } +y ^{ 3 } -z ^{ 3 } +3xyz$
$x ^ { 3 } + 3 x y z + y ^ { 3 } - z ^ { 3 }$
Organize polynomials
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } }$
$\left ( x + y - z \right ) \left ( x ^ { 2 } - x y + x z + y ^ { 2 } + y z + z ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
 Arrange an equation using the transformation of the multiplication formula 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ z } \right )$
$\left ( x + y - z \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ z } \right )$
 Organize the expression 
$\left ( x + y - z \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \right )$
$\dfrac { 1 } { 2 } \left ( x + y - z \right ) \left ( \left ( x - y \right ) ^ { 2 } + \left ( y + z \right ) ^ { 2 } + \left ( z + x \right ) ^ { 2 } \right )$
Organize equations using specific formulas
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
 Transform into the transformation format of the multiplication formula 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right )$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right )$
 Factorize to use $x^{3}+y^{3}+z^{3}-3xyz=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yx-zx)$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right )$
$\left ( x + y - z \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right )$
 Organize equations using specific formulas 
$\left ( x + y - z \right ) \times \color{#FF6800}{ \dfrac { 1 } { 2 } } \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 1 } { 2 } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \right ) \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
$\dfrac { 1 } { 2 } \left ( x + y - z \right ) \left ( \left ( x - y \right ) ^ { 2 } + \left ( y \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } z \right ) \right ) ^ { 2 } + \left ( - z - x \right ) ^ { 2 } \right )$
 Simplify Minus 
$\dfrac { 1 } { 2 } \left ( x + y - z \right ) \left ( \left ( x - y \right ) ^ { 2 } + \left ( y + z \right ) ^ { 2 } + \left ( - z - x \right ) ^ { 2 } \right )$
$\dfrac { 1 } { 2 } \left ( x + y - z \right ) \left ( \left ( x - y \right ) ^ { 2 } + \left ( y + z \right ) ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
 If the inside of power is all negative numbers, change them to positive numbers 
$\dfrac { 1 } { 2 } \left ( x + y - z \right ) \left ( \left ( x - y \right ) ^ { 2 } + \left ( y + z \right ) ^ { 2 } + \left ( \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture