Symbol

# Calculator search results

Formula
Solve the cubic equation
Graph
$y = x ^ { 3 } + 8$
$y = 0$
$x$Intercept
$\left ( - 2 , 0 \right )$
$y$Intercept
$\left ( 0 , 8 \right )$
Derivative
$3 x ^ { 2 }$
Seconde derivative
$6 x$
Local Maximum
$\left ( 0 , 8 \right )$
Point of inflection
$\left ( 0 , 8 \right )$
$x ^{ 3 } +8 = 0$
$x = - 2$
Solve the cubic equation
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } = \color{#FF6800}{ 0 }$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } = \color{#FF6800}{ 0 } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$x ^ { 3 } = \color{#FF6800}{ 0 } - 8$
 0 does not change when you add or subtract 
$x ^ { 3 } = - 8$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } = \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Do the cube root on both sides of the equation 
$\color{#FF6800}{ x } = \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ - } \color{#FF6800}{ 8 } }$
$x = \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ - } \color{#FF6800}{ 8 } }$
 The square root of a negative and odd root is always negative 
$x = \color{#FF6800}{ - } \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 8 } }$
$x = - \sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 8 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$x = - \color{#FF6800}{ 2 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture