# Calculator search results

Formula
Factorize the expression
$x ^{ 3 } +4x ^{ 2 } -9x-36$
$\left ( x - 3 \right ) \left ( x + 3 \right ) \left ( x + 4 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 36 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right )$
$\left ( x - 3 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right )$
 Use the factoring formula, $x^{2} + \left(a+b\right)x + ab = \left(x+a\right)\left(x+b\right)$
$\left ( x - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$\left ( x - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Sort the factors 
$\left ( x - 3 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
Solution search results