Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Expand the expression
Answer
See the solving process
Factorize the expression
Answer
See the solving process
$x ^ { 2 } y + x ^ { 2 } z + x y ^ { 2 } + x y z$
Organize polynomials
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
$x \left ( x + y \right ) \left ( y + z \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
$ $ Expand the expression $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ z }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \right )$
$x \left ( \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ z } \right )$
$ $ Do factorization $ $
$x \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ z } \right )$
Solution search results
Using the \emph{removal of first derivative} method, the differential equation \( \frac{d^{2}y} $\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$ $dx\right)+Qy=RN\right)$ is transformed as \). For, the differential equation \frac{d^{2}y} $\left(d^{n}\left(2\right)y\right)$ $dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the value of $\left(11\right)$
Calculus
Search count: 3,465
Check solution
$5.\times n_{2yz+\times y}n_{2z+\times yz}n_{2}=$ $x$ $○$ O $xyz\left(x+y+z\right)$ $○$ O $\times yz\left(y+z\right)$ $○$ O $xyz\left(x+y\right)$ $○$ O $xyz\left(x+z\right)$
7th-9th grade
Algebra
Check solution
$∠$ $F$ From the sum $ot$ $x^{A}\left(2\right)-8$ with $3x-12$ subtract the sum $ofx-9$ with $3x-x^{A}\left(2\right)$ Multinlication takes place $\left(2\times A$ $\left(2\right)+5x+21\right)\left(x-$ $5\right)=$ #Please provide solution by using math formula.
10th-13th grade
Geometry
Check solution
Solve $1∪e$ $\left(y2+2y^{2}\right)dx$ $+\left(zx+2y^{2}\right)dy+\left(xy+\times y^{2}\right)dx=0$
Algebra
Check solution
#This question was automatically translated by Qanda $A1$ The proper process $t09$ obtain $m$ knowing that $ts$ local minimum $s$ $s$ $nclonf\left(x\right)=x^{n}\left(2\right)+\times \left(m\right)$ $\left(x\right)is$ Select a $=2e$ in the funclon
10th-13th grade
Geometry
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com