qanda-logo
search-icon
Symbol

Calculator search results

Calculate the value
Answer
circle-check-icon
expand-arrow-icon
Factorize by the perfect square formula
Answer
circle-check-icon
$\dfrac { 4 x ^ { 2 } - 4 x + 1 } { 4 }$
Arrange the rational expression
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } }$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } }$
$\dfrac { 1 } { 4 } \left ( 2 x - 1 \right ) ^ { 2 }$
Express as the perfect square formula
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } }$
$ $ Bind the expressions with the common factor $ \dfrac { 1 } { 4 }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$\dfrac { 1 } { 4 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 4 x + 1 \right )$
$ $ Present as the shape of the power $ $
$\dfrac { 1 } { 4 } \left ( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 4 x + 1 \right )$
$\dfrac { 1 } { 4 } \left ( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 4 x + 1 \right )$
$ $ Binding the power $ $
$\dfrac { 1 } { 4 } \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } - 4 x + 1 \right )$
$\dfrac { 1 } { 4 } \left ( \left ( 2 x \right ) ^ { 2 } - 4 x + \color{#FF6800}{ 1 } \right )$
$ $ Present as the shape of the power $ $
$\dfrac { 1 } { 4 } \left ( \left ( 2 x \right ) ^ { 2 } - 4 x + \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right )$
$\dfrac { 1 } { 4 } \left ( \left ( 2 x \right ) ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + 1 ^ { 2 } \right )$
$ $ Change the term in the middle $ $
$\dfrac { 1 } { 4 } \left ( \left ( 2 x \right ) ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \right ) + 1 ^ { 2 } \right )$
$\dfrac { 1 } { 4 } \left ( \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Organize the expression using $ A^{2} ± 2AB + B^2 = (A ± B)^{2}$
$\dfrac { 1 } { 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture