Calculator search results

Formula
Solve a quadratic inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$x ^ { 2 } - 6 x + 9 \leq 0$
$x ^ { 2 } - 6 x + 9 \leq 0$
Solution of inequality
$x = 3$
$x ^{ 2 } -6x+9 \leq 0$
$x = 3$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \leq 0$
$ $ Factorize the expression $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \leq 0$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \leq \color{#FF6800}{ 0 }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ x } = \color{#FF6800}{ 3 }$
$ $ 그래프 보기 $ $
Inequality
Solution search results
search-thumbnail-Jumlah nilai $x$ yang memenuhi persamaan $-3$ $\left(x^{2}-6x+9$ $\longdiv{x-1}=\left(x-3\right)^{x-4}$ adalah ... 
$A$ $11$ 
B. $12$ 
C. $13$ 
D. $14$ 
E. $15$ 
$0$ $A$ 
$0$ $B$ 
$\left($ $C$ 
$○$ $D$ 
$0$ $E$
10th-13th grade
Other
search-thumbnail-
$\left(3x^{2}-18x+40x^{3}$ $-25x^{4}+4x^{5}\right)\div \left(x^{2}-6x+$ $9\right)$
10th-13th grade
Geometry
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo