$x = \dfrac { \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } 6 \right ) \pm \sqrt{ \left ( - 6 \right ) ^ { 2 } - 4 \times 1 \times 8 } } { 2 \times 1 }$
$ $ Simplify Minus $ $
$x = \dfrac { 6 \pm \sqrt{ \left ( - 6 \right ) ^ { 2 } - 4 \times 1 \times 8 } } { 2 \times 1 }$
$x = \dfrac { 6 \pm \sqrt{ \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times 8 } } { 2 \times 1 }$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$x = \dfrac { 6 \pm \sqrt{ 6 ^ { 2 } - 4 \times 1 \times 8 } } { 2 \times 1 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 6 \pm \sqrt{ 6 ^ { 2 } - 4 \times 1 \times 8 } } { 2 \times 1 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 6 \pm \sqrt{ 4 } } { 2 \times 1 } }$
$x = \dfrac { 6 \pm \sqrt{ \color{#FF6800}{ 4 } } } { 2 \times 1 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$x = \dfrac { 6 \pm \color{#FF6800}{ 2 } } { 2 \times 1 }$
$x = \dfrac { 6 \pm 2 } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { 6 \pm 2 } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 6 \pm 2 } { 2 } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 6 + 2 } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 6 - 2 } { 2 } } \end{array}$
$\begin{array} {l} x = \dfrac { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } } { 2 } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$ $ Add $ 6 $ and $ 2$
$\begin{array} {l} x = \dfrac { \color{#FF6800}{ 8 } } { 2 } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 8 } { 2 } } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$ $ Do the reduction of the fraction format $ $
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 4 } { 1 } } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 4 } { 1 } } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$ $ Reduce the fraction to the lowest term $ $
$\begin{array} {l} x = \color{#FF6800}{ 4 } \\ x = \dfrac { 6 - 2 } { 2 } \end{array}$
$\begin{array} {l} x = 4 \\ x = \dfrac { \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } } { 2 } \end{array}$
$ $ Subtract $ 2 $ from $ 6$
$\begin{array} {l} x = 4 \\ x = \dfrac { \color{#FF6800}{ 4 } } { 2 } \end{array}$
$\begin{array} {l} x = 4 \\ x = \color{#FF6800}{ \dfrac { 4 } { 2 } } \end{array}$
$ $ Do the reduction of the fraction format $ $
$\begin{array} {l} x = 4 \\ x = \color{#FF6800}{ \dfrac { 2 } { 1 } } \end{array}$
$\begin{array} {l} x = 4 \\ x = \color{#FF6800}{ \dfrac { 2 } { 1 } } \end{array}$
$ $ Reduce the fraction to the lowest term $ $
$\begin{array} {l} x = 4 \\ x = \color{#FF6800}{ 2 } \end{array}$