# Calculator search results

Formula
Expand the expression
Factorize the expression
$x ^{ 2 } -6x \left( a+b \right) +9 \left( a+b \right) ^{ 2 }$
$x ^ { 2 } + \left ( - 6 a - 6 b \right ) x + 9 a ^ { 2 } + 18 a b + 9 b ^ { 2 }$
Organize polynomials
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) + 9 \left ( a + b \right ) ^ { 2 }$
 Organize the mononomial expression 
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } + 9 \left ( a + b \right ) ^ { 2 }$
$x ^ { 2 } + \left ( - 6 a - 6 b \right ) x + 9 \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$x ^ { 2 } + \left ( - 6 a - 6 b \right ) x + 9 \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$x ^ { 2 } + \left ( - 6 a - 6 b \right ) x + \color{#FF6800}{ 9 } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
 Arrange the constant term 
$x ^ { 2 } + \left ( - 6 a - 6 b \right ) x + \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 18 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \color{#FF6800}{ 9 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\left ( 3 a + 3 b - x \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 9 } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Do factorization 
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results