$x = \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times \left ( - 36 \right ) } } { 2 \times 1 }$
$ $ 0 has no sign $ $
$x = \dfrac { \color{#FF6800}{ 0 } \pm \sqrt{ 0 ^ { 2 } - 4 \times 1 \times \left ( - 36 \right ) } } { 2 \times 1 }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times \left ( - 36 \right ) } } { 2 \times 1 }$
$ $ The power of 0 is 0 $ $
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 0 } - 4 \times 1 \times \left ( - 36 \right ) } } { 2 \times 1 }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm \sqrt{ 0 - 4 \times 1 \times \left ( - 36 \right ) } } { 2 \times 1 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm \sqrt{ 144 } } { 2 \times 1 } }$
$x = \dfrac { 0 \pm \sqrt{ \color{#FF6800}{ 144 } } } { 2 \times 1 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$x = \dfrac { 0 \pm \color{#FF6800}{ 12 } } { 2 \times 1 }$
$x = \dfrac { 0 \pm 12 } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { 0 \pm 12 } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 \pm 12 } { 2 } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 + 12 } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 0 - 12 } { 2 } } \end{array}$
$\begin{array} {l} x = \dfrac { \color{#FF6800}{ 0 } + 12 } { 2 } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$ $ 0 does not change when you add or subtract $ $
$\begin{array} {l} x = \dfrac { 12 } { 2 } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 12 } { 2 } } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$ $ Do the reduction of the fraction format $ $
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 6 } { 1 } } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { 6 } { 1 } } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$ $ Reduce the fraction to the lowest term $ $
$\begin{array} {l} x = \color{#FF6800}{ 6 } \\ x = \dfrac { 0 - 12 } { 2 } \end{array}$
$\begin{array} {l} x = 6 \\ x = \dfrac { \color{#FF6800}{ 0 } - 12 } { 2 } \end{array}$
$ $ 0 does not change when you add or subtract $ $
$\begin{array} {l} x = 6 \\ x = \dfrac { - 12 } { 2 } \end{array}$
$\begin{array} {l} x = 6 \\ x = \color{#FF6800}{ \dfrac { - 12 } { 2 } } \end{array}$
$ $ Do the reduction of the fraction format $ $
$\begin{array} {l} x = 6 \\ x = \color{#FF6800}{ \dfrac { - 6 } { 1 } } \end{array}$
$\begin{array} {l} x = 6 \\ x = \dfrac { - 6 } { \color{#FF6800}{ 1 } } \end{array}$
$ $ If the denominator is 1, the denominator can be removed $ $
$\begin{array} {l} x = 6 \\ x = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \end{array}$