qanda-logo
search-icon
Symbol

Calculator search results

Solve the quadratic equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Number of solution
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Relationship between roots and coefficients
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = x ^ { 2 } + x + \dfrac { 1 } { 2 }$
$y = 0$
$y$Intercept
$\left ( 0 , \dfrac { 1 } { 2 } \right )$
Minimum
$\left ( - \dfrac { 1 } { 2 } , \dfrac { 1 } { 4 } \right )$
Standard form
$y = \left ( x + \dfrac { 1 } { 2 } \right ) ^ { 2 } + \dfrac { 1 } { 4 }$
$\begin{array} {l} x = \dfrac { - 1 + i } { 2 } \\ x = \dfrac { - 1 - i } { 2 } \end{array}$
Solve quadratic equations using the square root
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$ $ Divide both sides by the coefficient of the leading highest term $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Convert the quadratic expression on the left side to a perfect square format $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ 0 }$
$\left ( x + \dfrac { 1 } { 2 } \right ) ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } = 0$
$ $ Move the constant to the right side and change the sign $ $
$\left ( x + \dfrac { 1 } { 2 } \right ) ^ { 2 } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( x + \dfrac { 1 } { 2 } \right ) ^ { 2 } = - \dfrac { 1 } { 2 } + \left ( \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ When raising a fraction to the power, raise the numerator and denominator each to the power $ $
$\left ( x + \dfrac { 1 } { 2 } \right ) ^ { 2 } = - \dfrac { 1 } { 2 } + \dfrac { \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } }$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } } { \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } } }$
$ $ Organize the expression $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } }$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } }$
$ $ Solve quadratic equations using the square root $ $
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } } }$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 4 } } } }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ x } = \pm \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } }$
$\color{#FF6800}{ x } = \pm \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \end{array}$
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \end{array}$
$ $ Organize the expression $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \end{array}$
$\begin{array} {l} x = \dfrac { - 1 + i } { 2 } \\ x = \dfrac { - 1 - i } { 2 } \end{array}$
Calculate using the quodratic formula$($Imaginary root solution$)
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$ $ Solve the quadratic equation $ ax^{2}+bx+c=0 $ using the quadratic formula $ \dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 4 } } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 4 } } } { 2 \times 2 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$x = \dfrac { - 2 \pm \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 1 } } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm 2 \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 1 } } } { 2 \times 2 }$
$ $ It is $ \sqrt{-1} = i$
$x = \dfrac { - 2 \pm 2 \color{#FF6800}{ i } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm 2 i } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } }$
$ $ Multiply $ 2 $ and $ 2$
$x = \dfrac { - 2 \pm 2 i } { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \color{#FF6800}{ 2 } \color{#FF6800}{ i } } { \color{#FF6800}{ 4 } } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ i } } { \color{#FF6800}{ 4 } } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } } { \color{#FF6800}{ 4 } } } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ i } } { \color{#FF6800}{ 4 } } } \\ x = \dfrac { - 2 - 2 i } { 4 } \end{array}$
$ $ Reduce the fraction $ $
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \\ x = \dfrac { - 2 - 2 i } { 4 } \end{array}$
$\begin{array} {l} x = \dfrac { - 1 + i } { 2 } \\ x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } } { \color{#FF6800}{ 4 } } } \end{array}$
$ $ Reduce the fraction $ $
$\begin{array} {l} x = \dfrac { - 1 + i } { 2 } \\ x = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } } { \color{#FF6800}{ 2 } } } \end{array}$
$ $ Do not have the solution $ $
Calculate using the quadratic formula
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$ $ Solve the quadratic equation $ ax^{2}+bx+c=0 $ using the quadratic formula $ \dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - 4 \times 2 \times 1 } } { 2 \times 2 }$
$ $ Calculate power $ $
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ 4 } - 4 \times 2 \times 1 } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm \sqrt{ 4 - 4 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } } { 2 \times 2 }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { - 2 \pm \sqrt{ 4 - 4 \times 2 } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm \sqrt{ 4 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } } { 2 \times 2 }$
$ $ Multiply $ - 4 $ and $ 2$
$x = \dfrac { - 2 \pm \sqrt{ 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 } } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } } } { 2 \times 2 }$
$ $ Subtract $ 8 $ from $ 4$
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 4 } } } { 2 \times 2 }$
$x = \dfrac { - 2 \pm \sqrt{ - 4 } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } }$
$ $ Multiply $ 2 $ and $ 2$
$x = \dfrac { - 2 \pm \sqrt{ - 4 } } { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 2 } \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 4 } } } { \color{#FF6800}{ 4 } } }$
$ $ The square root of a negative number does not exist within the set of real numbers $ $
$ $ Do not have the solution $ $
$ $ Do not have the real root $ $
Find the number of solutions
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$ $ Determine the number of roots using discriminant, $ D=b^{2}-4ac $ from quadratic equation, $ ax^{2}+bx+c=0$
$\color{#FF6800}{ D } = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$D = \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } - 4 \times 2 \times 1$
$ $ Calculate power $ $
$D = \color{#FF6800}{ 4 } - 4 \times 2 \times 1$
$D = 4 - 4 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$D = 4 - 4 \times 2$
$D = 4 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$ $ Multiply $ - 4 $ and $ 2$
$D = 4 \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$D = \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$ $ Subtract $ 8 $ from $ 4$
$D = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ D } = \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Since $ D<0 $ , there is no real root of the following quadratic equation $ $
$ $ Do not have the real root $ $
$\alpha + \beta = - 1 , \alpha \beta = \dfrac { 1 } { 2 }$
Find the sum and product of the two roots of the quadratic equation
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$ $ Calculate the expression as a fraction format $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = 0$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } } = \color{#FF6800}{ 0 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ 0 }$
$ $ In the quadratic equation $ ax^{2}+bx+c=0 $ , if the two roots are $ \alpha, \beta $ , then it is $ \alpha + \beta =-\dfrac{b}{a} $ , $ \alpha\times\beta=\dfrac{c}{a}$
$\color{#FF6800}{ \alpha } \color{#FF6800}{ + } \color{#FF6800}{ \beta } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 2 } } } , \color{#FF6800}{ \alpha } \color{#FF6800}{ \beta } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 1 } } { \color{#FF6800}{ 2 } } }$
$\alpha + \beta = - \color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 2 } } } , \alpha \beta = \dfrac { 1 } { 2 }$
$ $ Reduce the fraction $ $
$\alpha + \beta = - \color{#FF6800}{ 1 } , \alpha \beta = \dfrac { 1 } { 2 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture