Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Expand the expression
Answer
See the solving process
Factorize the expression
Answer
See the solving process
$x ^ { 2 } + 2 x y + x + y ^ { 2 } + y - 6$
Organize polynomials
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\left ( x + y - 2 \right ) \left ( x + y + 3 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Solution search results
$∠$ $F$ From the sum $ot$ $x^{A}\left(2\right)-8$ with $3x-12$ subtract the sum $ofx-9$ with $3x-x^{A}\left(2\right)$ Multinlication takes place $\left(2\times A$ $\left(2\right)+5x+21\right)\left(x-$ $5\right)=$ #Please provide solution by using math formula.
10th-13th grade
Geometry
Check solution
$→^{3}$ $\bar{=7} $ 1) Tal $x^{2}+2xy+y^{2}+2\times \left(\dfrac {3x-y} {-1}\right)+2y$ $\left(\dfrac {3x-y} {-1}\right)$ $5$ $\left(3x-y\right)$ y)? 2) Wr $=0$ 3)Sim 1 Mark $a\times 2$ > $2+2xy+y^{2}-2\times \left(3\times -y\right)-2y\left(3\times -y\right)-5\left(3x-y\right)^{2}=0$ 4. App $-$ $-$ $-$ $2$ $x$ $y$ $-$ $6$ $x$ $y$ $+$ $2$ $3x^{2}+2xy+y^{2}-6x^{2}+-y^{2}$ $-5\left(9x^{2}+y^{2}$ $+y^{2}-6\times y\right)=0$ $→\times 2$ $x^{2}+2xy+y^{2}-6x^{2}+2xy-6xy+2y^{2}-45x^{2}-5y^{2}+30x$ $-$ $5y^{2}+30\times y=0$ $-$ $→50x^{2}+2y^{2}-28xy=0$ $z\left(25x^{2}+y^{2}-14\times y\right)=0$
10th-13th grade
Other
Check solution
Using the \emph{removal of first derivative} method, the differential equation \( \frac{d^{2}y} $\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$ $dx\right)+Qy=RN\right)$ is transformed as \). For, the differential equation \frac{d^{2}y} $\left(d^{n}\left(2\right)y\right)$ $dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the value of $\left(11\right)$
Calculus
Search count: 3,465
Check solution
If $4=x^{2}+2xy+y^{2}+x+y$ $hax\dfrac {δa} {dx}+y\dfrac {a_{a}} {y}$ is equal to Select $One$ $b$ $d$ $a$ $O$ $C$
Calculus
Check solution
$2$ Solve the simultaneous equations $ \begin{cases} \left(2x+y-1\right)\left(x-y\right)=0 \\ x^{2}+2xy+y^{2}+2x=2 \end{cases} $
Algebra
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com