$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } = \color{#FF6800}{ 0 }$
$ $ Solve the quadratic equation $ ax^{2}+bx+c=0 $ using the quadratic formula $ \dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 \pm \sqrt{ 2 ^ { 2 } - 4 \times 1 \times 6 } } { 2 \times 1 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 \pm \sqrt{ 2 ^ { 2 } - 4 \times 1 \times 6 } } { 2 \times 1 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 \pm \sqrt{ - 20 } } { 2 \times 1 } }$
$x = \dfrac { - 2 \pm \sqrt{ \color{#FF6800}{ - } \color{#FF6800}{ 20 } } } { 2 \times 1 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$x = \dfrac { - 2 \pm \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ i } } { 2 \times 1 }$
$x = \dfrac { - 2 \pm 2 \sqrt{ 5 } i } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = \dfrac { - 2 \pm 2 \sqrt{ 5 } i } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 \pm 2 \sqrt{ 5 } i } { 2 } }$
$ $ Separate the answer $ $
$\begin{array} {l} \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 + 2 \sqrt{ 5 } i } { 2 } } \\ \color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 2 - 2 \sqrt{ 5 } i } { 2 } } \end{array}$
$\begin{array} {l} x = \color{#FF6800}{ \dfrac { - 2 + 2 \sqrt{ 5 } i } { 2 } } \\ x = \dfrac { - 2 - 2 \sqrt{ 5 } i } { 2 } \end{array}$
$ $ Reduce the fraction $ $
$\begin{array} {l} x = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ i } \\ x = \dfrac { - 2 - 2 \sqrt{ 5 } i } { 2 } \end{array}$
$\begin{array} {l} x = - 1 + \sqrt{ 5 } i \\ x = \color{#FF6800}{ \dfrac { - 2 - 2 \sqrt{ 5 } i } { 2 } } \end{array}$
$ $ Reduce the fraction $ $
$\begin{array} {l} x = - 1 + \sqrt{ 5 } i \\ x = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ i } \end{array}$