# Calculator search results

Formula
Expand the expression
Factorize the expression
$x ^{ 2 } \left( y ^{ 2 } -1 \right) +2x \left( y ^{ 2 } -1 \right) +y ^{ 2 } -1$
$x ^ { 2 } y ^ { 2 } - x ^ { 2 } + 2 x y ^ { 2 } - 2 x + y ^ { 2 } - 1$
Organize polynomials
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) + 2 x \left ( y ^ { 2 } - 1 \right ) + y ^ { 2 } - 1$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + 2 x \left ( y ^ { 2 } - 1 \right ) + y ^ { 2 } - 1$
$x ^ { 2 } y ^ { 2 } - x ^ { 2 } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) + y ^ { 2 } - 1$
 Organize the expression with the distributive law 
$x ^ { 2 } y ^ { 2 } - x ^ { 2 } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + y ^ { 2 } - 1$
$\left ( x + 1 \right ) ^ { 2 } \left ( y - 1 \right ) \left ( y + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results