# Calculator search results

Formula
Expand the expression
Organize using the law of exponent
$x \times x \times y \times y$
$x ^ { 2 } y ^ { 2 }$
Organize polynomials
$\color{#FF6800}{ x } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ y }$
 Arrange the variable part of the mononomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$x ^ { 2 } y ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ x } x y y$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } } x y y$
$x ^ { 1 } \color{#FF6800}{ x } y y$
 If the exponent is omitted, the exponent of that term is equal to 1 
$x ^ { 1 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } } y y$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } } y y$
 Add the exponent as the base is the same 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y y$
$x ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y y$
 Add $1$ and $1$
$x ^ { \color{#FF6800}{ 2 } } y y$
$x ^ { 2 } \color{#FF6800}{ y } y$
 If the exponent is omitted, the exponent of that term is equal to 1 
$x ^ { 2 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 1 } } y$
$x ^ { 2 } y ^ { 1 } \color{#FF6800}{ y }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$x ^ { 2 } y ^ { 1 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 1 } }$
$x ^ { 2 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$x ^ { 2 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$x ^ { 2 } y ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$x ^ { 2 } y ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture