# Calculator search results

Formula
Number of solution
Relationship between roots and coefficients
Graph
$y = x \left ( x + 15 \right )$
$y = 5 \left ( x - 5 \right )$
$x$-intercept
$\left ( - 15 , 0 \right )$, $\left ( 0 , 0 \right )$
$y$-intercept
$\left ( 0 , 0 \right )$
Minimum
$\left ( - \dfrac { 15 } { 2 } , - \dfrac { 225 } { 4 } \right )$
Standard form
$y = \left ( x + \dfrac { 15 } { 2 } \right ) ^ { 2 } - \dfrac { 225 } { 4 }$
$x$-intercept
$\left ( 5 , 0 \right )$
$y$-intercept
$\left ( 0 , - 25 \right )$
$x \left( x+15 \right) = 5 \left( x-5 \right)$
$x = - 5$
Solve quadratic equations using the square root
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = 5 \left ( x - 5 \right )$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } = 5 \left ( x - 5 \right )$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Organize the expression 
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 25$
 Move the expression to the left side and change the symbol 
$x ^ { 2 } + 15 x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = 0$
$x ^ { 2 } + \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 25 = 0$
 Calculate between similar terms 
$x ^ { 2 } + \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 25 = 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = 0$
 Express as the perfect square formula 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } = 0$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) ^ { \color{#FF6800}{ 2 } } = \color{#FF6800}{ 0 }$
 Solve quadratic equations using the square root 
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } = \color{#FF6800}{ 0 }$
$\color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } = \color{#FF6800}{ 0 }$
 Solve a solution to $x$
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$x = - 5$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = 5 \left ( x - 5 \right )$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } = 5 \left ( x - 5 \right )$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Organize the expression 
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 25$
 Move the expression to the left side and change the symbol 
$x ^ { 2 } + 15 x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = \color{#FF6800}{ 0 }$
 Organize the expression 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 10 \pm \sqrt{ 0 } } { 2 \times 1 } }$
$x = \dfrac { - 10 \pm \sqrt{ \color{#FF6800}{ 0 } } } { 2 \times 1 }$
$n square root$ of 0 is 0 
$x = \dfrac { - 10 \pm \color{#FF6800}{ 0 } } { 2 \times 1 }$
$x = \dfrac { - 10 \pm 0 } { 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } }$
 Multiplying any number by 1 does not change the value 
$x = \dfrac { - 10 \pm 0 } { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 10 \pm 0 } { 2 } }$
 The value will not be changed even if adding or subtracting 0 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { - 10 } { 2 } }$
$x = \color{#FF6800}{ \dfrac { - 10 } { 2 } }$
 Do the reduction of the fraction format 
$x = \color{#FF6800}{ \dfrac { - 5 } { 1 } }$
$x = \dfrac { - 5 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$x = \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 1 real root (multiple root) 
Find the number of solutions
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = 5 \left ( x - 5 \right )$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } = 5 \left ( x - 5 \right )$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Organize the expression 
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 25$
 Move the expression to the left side and change the symbol 
$x ^ { 2 } + 15 x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = 0$
$x ^ { 2 } + \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 25 = 0$
 Calculate between similar terms 
$x ^ { 2 } + \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 25 = 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = \color{#FF6800}{ 0 }$
 Determine the number of roots using discriminant, $D=b^{2}-4ac$ from quadratic equation, $ax^{2}+bx+c=0$
$\color{#FF6800}{ D } = \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 }$
$D = \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 2 } } - 4 \times 1 \times 25$
 Calculate power 
$D = \color{#FF6800}{ 100 } - 4 \times 1 \times 25$
$D = 100 - 4 \color{#FF6800}{ \times } \color{#FF6800}{ 1 } \times 25$
 Multiplying any number by 1 does not change the value 
$D = 100 - 4 \times 25$
$D = 100 \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 }$
 Multiply $- 4$ and $25$
$D = 100 \color{#FF6800}{ - } \color{#FF6800}{ 100 }$
$D = \color{#FF6800}{ 100 } \color{#FF6800}{ - } \color{#FF6800}{ 100 }$
 Remove the two numbers if the values are the same and the signs are different 
$D = 0$
$\color{#FF6800}{ D } = \color{#FF6800}{ 0 }$
 Since $D=0$ , the number of real root of the following quadratic equation is 1 (multiple root) 
 1 real root (multiple root) 
$\alpha + \beta = - 10 , \alpha \beta = 25$
Find the sum and product of the two roots of the quadratic equation
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \right ) = 5 \left ( x - 5 \right )$
 Organize the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } = 5 \left ( x - 5 \right )$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Organize the expression 
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 }$
$x ^ { 2 } + 15 x = \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 25$
 Move the expression to the left side and change the symbol 
$x ^ { 2 } + 15 x \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = 0$
$x ^ { 2 } + \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 25 = 0$
 Calculate between similar terms 
$x ^ { 2 } + \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 25 = 0$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 25 } = \color{#FF6800}{ 0 }$
 In the quadratic equation $ax^{2}+bx+c=0$ , if the two roots are $\alpha, \beta$ , then it is $\alpha + \beta =-\dfrac{b}{a}$ , $\alpha\times\beta=\dfrac{c}{a}$
$\color{#FF6800}{ \alpha } \color{#FF6800}{ + } \color{#FF6800}{ \beta } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 10 } { 1 } } , \color{#FF6800}{ \alpha } \color{#FF6800}{ \beta } = \color{#FF6800}{ \dfrac { 25 } { 1 } }$
$\alpha + \beta = - \dfrac { 10 } { \color{#FF6800}{ 1 } } , \alpha \beta = \dfrac { 25 } { 1 }$
 If the denominator is 1, the denominator can be removed 
$\alpha + \beta = - \color{#FF6800}{ 10 } , \alpha \beta = \dfrac { 25 } { 1 }$
$\alpha + \beta = - 10 , \alpha \beta = \dfrac { 25 } { \color{#FF6800}{ 1 } }$
 If the denominator is 1, the denominator can be removed 
$\alpha + \beta = - 10 , \alpha \beta = \color{#FF6800}{ 25 }$
 그래프 보기 
Graph
Solution search results