Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$x \left( 2y-x \right) ^{ 2 } +2x ^{ 2 } \left( x-2y \right)$
$3 x ^ { 3 } - 8 x ^ { 2 } y + 4 x y ^ { 2 }$
Organize polynomials
$x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } + 2 x ^ { 2 } \left ( x - 2 y \right )$
 Expand the binomial expression 
$x \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right ) + 2 x ^ { 2 } \left ( x - 2 y \right )$
$x \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right ) + 2 x ^ { 2 } \left ( x - 2 y \right )$
 Sort the polynomial expressions in descending order 
$x \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) + 2 x ^ { 2 } \left ( x - 2 y \right )$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) + 2 x ^ { 2 } \left ( x - 2 y \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + 2 x ^ { 2 } \left ( x - 2 y \right )$
$x ^ { 3 } - 4 x ^ { 2 } y + 4 x y ^ { 2 } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
 Organize the expression with the distributive law 
$x ^ { 3 } - 4 x ^ { 2 } y + 4 x y ^ { 2 } + \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \left ( - 4 - 4 \right ) x ^ { 2 } y + 4 x y ^ { 2 }$
 Arrange the constant term 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \left ( - 4 - 4 \right ) x ^ { 2 } y + 4 x y ^ { 2 }$
$3 x ^ { 3 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + 4 x y ^ { 2 }$
 Arrange the constant term 
$3 x ^ { 3 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + 4 x y ^ { 2 }$
$x \left ( x - 2 y \right ) \left ( 3 x - 2 y \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
 Expand the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
 Tie a common factor 
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
$x \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
 Do factorization 
$x \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture