# Calculator search results

Formula
Judge the identity
Answer
Solve the equation
Answer
$x = \dfrac{ x }{ a } +b$
$\begin{cases} \dfrac { 1 } { a } = 1 \\ b = 0 \end{cases}$
Compare coefficients to find unknowns
$x = \color{#FF6800}{ \dfrac { x } { a } } \color{#FF6800}{ + } \color{#FF6800}{ b }$
 Organize the expression 
$x = \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { x } { a } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { x } { a } }$
 Compare the coefficients to form a system of equations 
$\begin{cases} \color{#FF6800}{ \dfrac { 1 } { a } } = \color{#FF6800}{ 1 } \\ \color{#FF6800}{ b } = \color{#FF6800}{ 0 } \end{cases}$
$\begin{cases} x + a b = a x \\ a \neq 0 \end{cases}$
Solve the fractional equation
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { x } { a } } \color{#FF6800}{ + } \color{#FF6800}{ b }$
 Simplify the expression 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { x + a b } { a } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { x + a b } { a } }$
 Reverse the left and right terms of the equation (or inequality) 
$\color{#FF6800}{ \dfrac { x + a b } { a } } = \color{#FF6800}{ x }$
$\color{#FF6800}{ \dfrac { x + a b } { a } } = \color{#FF6800}{ x }$
 If $\frac{a(x)}{b(x)} = c(x)$ is valid, it is $\begin{cases} a(x) = b(x) c(x) \\ b(x) \ne 0 \end{cases}$
$\begin{cases} \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } = \color{#FF6800}{ a } \color{#FF6800}{ x } \\ \color{#FF6800}{ a } \neq \color{#FF6800}{ 0 } \end{cases}$
Solution search results
7th-9th grade
Algebra
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture