Calculator search results
Formula
Calculate the differentiation
Answer
See the solving process
Find the points of local maxima, local minima and the points of inflection of the function
Answer
See the solving process
Graph
See details
$ f \left( x \right) = x ^ { 2 } + 1$
$ f \left( x \right)$-intercept
$\left ( 0 , 1 \right )$
Minimum
$\left ( 0 , 1 \right )$
Standard form
$ f \left( x \right) = x ^ { 2 } + 1$
$f\left( x \right) = x ^{ 2 } +1$
$\dfrac {d } {d x } {\left( f \left( x \right) \right)} = 2 x$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$x = 0 , $ minimal value $ $
Find the points of local maxima, local minima and the points of inflection of the function
$ f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Find critical points (Points where the differential value becomes 0) $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 0 }$
$\begin{cases} f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \\ \dfrac {d } {d \color{#FF6800}{ x } } {\left( f \right)} \left( \color{#FF6800}{ 0 } \right) = \color{#FF6800}{ 0 } \end{cases}$
$ $ Determine if it is the maximal value, the minimal value, the increasing inflection point, or the decreasing inflection point $ $
$ $ It is the minimal value $ $
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
7th-9th grade
Algebra
Check solution
7th-9th grade
Other
Check solution
Calculus
Check solution
Calculus
Check solution
Other
Check solution
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture