qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Find the points of local maxima, local minima and the points of inflection of the function
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$ f \left( x \right) = 3 x ^ { 2 } + 4$
$ f \left( x \right)$Intercept
$\left ( 0 , 4 \right )$
Minimum
$\left ( 0 , 4 \right )$
Standard form
$ f \left( x \right) = 3 x ^ { 2 } + 4$
$f\left( x \right) = 3x ^{ 2 } +4$
$\dfrac {d } {d x } {\left( f \left( x \right) \right)} = 6 x$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 6 } \color{#FF6800}{ x }$
$x = 0 , $ minimal value $ $
Find the points of local maxima, local minima and the points of inflection of the function
$ f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Find critical points (Points where the differential value becomes 0) $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 0 }$
$\begin{cases} f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \\ \dfrac {d } {d \color{#FF6800}{ x } } {\left( f \right)} \left( \color{#FF6800}{ 0 } \right) = \color{#FF6800}{ 0 } \end{cases}$
$ $ Determine if it is the maximal value, the minimal value, the increasing inflection point, or the decreasing inflection point $ $
$ $ It is the minimal value $ $
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-glt) $\right)=3x^{2}+4$ 
H) $=3x+2$ $nd\left(g+1$ 
Find
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo