qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the differentiation
Answer
circle-check-icon
expand-arrow-icon
Find the points of local maxima, local minima and the points of inflection of the function
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$ f \left( x \right) = 2 x ^ { 2 } - 4 x - 1$
$x$Intercept
$\left ( 1 - \dfrac { \sqrt{ 6 } } { 2 } , 0 \right )$, $\left ( 1 + \dfrac { \sqrt{ 6 } } { 2 } , 0 \right )$
$ f \left( x \right)$Intercept
$\left ( 0 , - 1 \right )$
Minimum
$\left ( 1 , - 3 \right )$
Standard form
$ f \left( x \right) = 2 \left ( x - 1 \right ) ^ { 2 } - 3$
$f\left( x \right) = 2x ^{ 2 } -4x-1$
$\dfrac {d } {d x } {\left( f \left( x \right) \right)} = 4 x - 4$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right)}$
$ $ Calculate the differentiation $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$x = 1 , $ minimal value $ $
Find the points of local maxima, local minima and the points of inflection of the function
$ f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Find critical points (Points where the differential value becomes 0) $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 1 }$
$\begin{cases} f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \\ \dfrac {d } {d \color{#FF6800}{ x } } {\left( f \right)} \left( \color{#FF6800}{ 1 } \right) = \color{#FF6800}{ 0 } \end{cases}$
$ $ Determine if it is the maximal value, the minimal value, the increasing inflection point, or the decreasing inflection point $ $
$ $ It is the minimal value $ $
$ $ 그래프 보기 $ $
Quadratic function
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo