   Symbol

# Calculator search results

Formula
Calculate the differentiation
Answer  Find the points of local maxima, local minima and the points of inflection of the function
Answer   Graph
$f \left( x \right) = x ^ { 2 }$
$x$Intercept
$\left ( 0 , 0 \right )$
$f \left( x \right)$Intercept
$\left ( 0 , 0 \right )$
Minimum
$\left ( 0 , 0 \right )$
Standard form
$f \left( x \right) = x ^ { 2 }$
$f \left( x \right) = x ^{ 2 }$
$\dfrac {d } {d x } {\left( f \left( x \right) \right)} = 2 x$
Calculate the differentiation of the logarithmic function
$\dfrac {d } {d \color{#FF6800}{ x } } {\left( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right)}$
 Calculate the differentiation 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$x = 0 ,$ minimal value 
Find the points of local maxima, local minima and the points of inflection of the function
$f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } }$
 Find critical points (Points where the differential value becomes 0) 
$\color{#FF6800}{ x } = \color{#FF6800}{ 0 }$
$\begin{cases} f \left( \color{#FF6800}{ x } \right) = \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \\ \dfrac {d } {d \color{#FF6800}{ x } } {\left( f \right)} \left( \color{#FF6800}{ 0 } \right) = \color{#FF6800}{ 0 } \end{cases}$
 Determine if it is the maximal value, the minimal value, the increasing inflection point, or the decreasing inflection point 
 It is the minimal value 
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture