Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Expand the expression
Answer
See the solving process
Factorize the expression
Answer
See the solving process
$a x ^ { 2 } + \left ( - a + 1 \right ) x - 1$
Organize polynomials
$\color{#FF6800}{ a } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ a } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\left ( x - 1 \right ) \left ( a x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ a } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ a } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results
$∠$ $F$ From the sum $ot$ $x^{A}\left(2\right)-8$ with $3x-12$ subtract the sum $ofx-9$ with $3x-x^{A}\left(2\right)$ Multinlication takes place $\left(2\times A$ $\left(2\right)+5x+21\right)\left(x-$ $5\right)=$ #Please provide solution by using math formula.
10th-13th grade
Geometry
Check solution
Using the \emph{removal of first derivative} method, the differential equation \( \frac{d^{2}y} $\left(d\times n$ $\left(2\right)\right)+P|ffac\left(dy\right)\left(dx\right)+Qy=F$ $dx\right)+Qy=RN\right)$ is transformed as \). For, the differential equation \frac{d^{2}y} $\left(d^{n}\left(2\right)y\right)$ $dx$ $\left(2\right)+2x$ $\left(0C\left(dy\right)\left(dx\right)+\left(x$ $2+1\right)y=\times n3+3x\right)$ the value of $\left(11\right)$
Calculus
Search count: 3,465
Check solution
$4.7$ The value of $x$ $\bar{a^{2}+ax+} x^{2}$ $=$ $\dfrac {1} {a^{2}-ax+x^{2}}+\dfrac {2ax} {a^{4}+a^{2}x^{2}+x^{4}}$ is $1$ $1$ $2ax$ $\bar{a^{2}+ax+x^{2}} $ $a^{2}-ax+x^{2\dfrac {+} {a^{4}+a^{2}x^{2}+x}4}$ $29$ $\bar{8} $ $2$ $\left($ (b) $1$ $\left(c\right)-1$ $\left($ (d) $0$
10th-13th grade
Other
Check solution
$220$ $x^{3}-x^{2}+ax+x-a-1$
7th-9th grade
Algebra
Check solution
$22.$ $x^{3}-x^{2}+ax+x-a-1$
10th-13th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com