qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Factorize the expression
Answer
circle-check-icon
$ab-a+b ^{ 2 } -b$
$\left ( a + b \right ) \left ( b - 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Solution search results
search-thumbnail-2. Reduce to lowest term, $\dfrac {a^{2}-b^{2}} {ab}-\dfrac {ab-b^{2}} {ab-a^{2}}$ is equal 
$\left(C$ 
$\left(a\right)$ $\dfrac {a} {b}$ (b) $\right)$ $\dfrac {a^{2}-2b^{2}} {ab}$ $\left(c\right)$ $a^{2}$ $\left($ (d) $a-2b$
7th-9th grade
Algebra
search-thumbnail-$a-b\right)^{3}$ $X$ $+\left(a+b\right)$ $y=a^{2}-2ab-$ 
$a+b\right)$ $x+\left(a+b\right)y=a^{2}+b^{2}$ 
$4$ $y_{y}$
10th-13th grade
Other
search-thumbnail-Redoce e in loost foom 
$a\bar{x-b} ^{2}$ $-$ $-$ $-$ $ab-6^{2}$ 
$ab$ $ab-a^{2}$
10th-13th grade
Other
search-thumbnail-$2ab$ $-2b$ 
$S$ $1+a^{2}-b^{2}$ $2ab$ $1-a^{2}+b^{2}$ $2a$ $=\left(1+a^{2}+b^{2}\right)$ 
$2b$ $-2a$ $1-a^{2}-b^{2}$
10th-13th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo