Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$ab \left( 4a+b \right) - \left( 3ab-b ^{ 2 } \right) \times a$
$a ^ { 2 } b + 2 a b ^ { 2 }$
Organize polynomials
$\color{#FF6800}{ a } \color{#FF6800}{ b } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) - \left ( 3 a b - b ^ { 2 } \right ) a$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } + \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } - \left ( 3 a b - b ^ { 2 } \right ) a$
$4 a ^ { 2 } b + a b ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) a$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$4 a ^ { 2 } b + a b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) a$
$4 a ^ { 2 } b + a b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ a }$
$ $ Organize the expression with the distributive law $ $
$4 a ^ { 2 } b + a b ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } + \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } + \left ( 1 + 1 \right ) a b ^ { 2 }$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } + \left ( 1 + 1 \right ) a b ^ { 2 }$
$a ^ { 2 } b + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Arrange the constant term $ $
$a ^ { 2 } b + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$a b \left ( a + 2 b \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } \color{#FF6800}{ b } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ a }$
$ $ Expand the expression $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ a } \color{#FF6800}{ b } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo