Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$a ^{ 2 } -b ^{ 2 } -ac+bc$
$a ^ { 2 } - a c - b ^ { 2 } + b c$
Organize polynomials
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$\left ( a - b \right ) \left ( a + b - c \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$ $ Expand the expression $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
Solution search results
search-thumbnail-$\left(ii\right)$ If $n$ $\dfrac {C_{r-1}} {a}=\dfrac {n_{c_{r}}} {b}=\dfrac {n_{C_{r+1}}} {c}$ then prove that 
$n=\dfrac {ab+2ac+bc} {b^{2}-ac}$ and $r=\dfrac {a\left(b+c\right)} {b^{2}-ac}$
10th-13th grade
Algebra
search-thumbnail-$\dfrac {a^{2}-ab-ac+bc} {a^{2}+ab-ac-bc}$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo