# Calculator search results

Formula
Expand the expression
Factorize the expression
$a ^{ 2 } -b ^{ 2 } - \left( a-b \right) ^{ 2 }$
$2 a b - 2 b ^ { 2 }$
Organize polynomials
$a ^ { 2 } - b ^ { 2 } - \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$a ^ { 2 } - b ^ { 2 } - \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$a ^ { 2 } - b ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$a ^ { 2 } - b ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 1 - 1 \right ) b ^ { 2 } + 2 a b$
 Organize the mononomial expression 
$\color{#FF6800}{ 0 } + \left ( - 1 - 1 \right ) b ^ { 2 } + 2 a b$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + 2 a b$
 Arrange the constant term 
$0 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + 2 a b$
$\color{#FF6800}{ 0 } - 2 b ^ { 2 } + 2 a b$
 0 does not change when you add or subtract 
$- 2 b ^ { 2 } + 2 a b$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$2 b \left ( a - b \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Tie a common factor 
$\color{#FF6800}{ 2 } \color{#FF6800}{ b } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
Solution search results