Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$a ^{ 2 } \left( b-c \right) +b ^{ 2 } \left( c-a \right) +c ^{ 2 } \left( a-b \right)$
$a ^ { 2 } b - a ^ { 2 } c - a b ^ { 2 } + a c ^ { 2 } + b ^ { 2 } c - b c ^ { 2 }$
Organize polynomials
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) + b ^ { 2 } \left ( c - a \right ) + c ^ { 2 } \left ( a - b \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } + b ^ { 2 } \left ( c - a \right ) + c ^ { 2 } \left ( a - b \right )$
$a ^ { 2 } b - a ^ { 2 } c + b ^ { 2 } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) + c ^ { 2 } \left ( a - b \right )$
 Sort the polynomial expressions in descending order 
$a ^ { 2 } b - a ^ { 2 } c + b ^ { 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) + c ^ { 2 } \left ( a - b \right )$
$a ^ { 2 } b - a ^ { 2 } c + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) + c ^ { 2 } \left ( a - b \right )$
 Organize the expression with the distributive law 
$a ^ { 2 } b - a ^ { 2 } c \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } + c ^ { 2 } \left ( a - b \right )$
$a ^ { 2 } b - a ^ { 2 } c - a b ^ { 2 } + b ^ { 2 } c + \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
 Organize the expression with the distributive law 
$a ^ { 2 } b - a ^ { 2 } c - a b ^ { 2 } + b ^ { 2 } c + \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\left ( a - b \right ) \left ( a - c \right ) \left ( b - c \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
 Expand the expression 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
 Do factorization 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture