Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$a \left( 4a-5 \right) +2a \left( a+3 \right)$
$6 a ^ { 2 } + a$
Organize polynomials
$\color{#FF6800}{ a } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) + 2 a \left ( a + 3 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ a } + 2 a \left ( a + 3 \right )$
$4 a ^ { 2 } - 5 a + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Organize the expression with the distributive law 
$4 a ^ { 2 } - 5 a + \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ a }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a }$
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 6 \right ) a$
 Arrange the constant term 
$\color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 6 \right ) a$
$6 a ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a }$
 Organize the mononomial expression 
$6 a ^ { 2 } + \color{#FF6800}{ a }$
$a \left ( 6 a + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ a } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Expand the expression 
$\color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a }$
$\color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a }$
 Bind the expressions with the common factor $a$
$\color{#FF6800}{ a } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture