Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Expand the expression
Answer
See the solving process
Factorize the expression
Answer
See the solving process
$9 x ^ { 2 } + 6 x y - 12 x z + y ^ { 2 } - 4 y z + 4 z ^ { 2 }$
Organize polynomials
$9 x ^ { 2 } + y ^ { 2 } + 4 z ^ { 2 } + 6 x y - 4 y z \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ z } \color{#FF6800}{ x }$
$ $ Sort the order of variables in the mononomial expression $ $
$9 x ^ { 2 } + y ^ { 2 } + 4 z ^ { 2 } + 6 x y - 4 y z \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ z }$
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ z }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } }$
$\left ( 3 x + y - 2 z \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ z } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \color{#FF6800}{ z } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ z } \color{#FF6800}{ x }$
$ $ Organize equations using specific formulas $ $
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ z } \right ) \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( 3 x + y \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ z } \right ) \right ) ^ { 2 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( 3 x + y \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ z } \right ) ^ { 2 }$
Solution search results
$\left($ $c\right)$ $x^{2}+y^{2}+4z^{2}+2xy-4yz-4xz$ by $\left(x+y-2z\right)$ $2$
7th-9th grade
Algebra
Check solution
$3.F$ 3.Factorise $49\times n2+y^{n}2+4z^{n2+14xy-4yz-282x}$
7th-9th grade
Algebra
Check solution
2. Simplify: $\left(3xy$ $-4yz$ $-2zx\right)$ $-\left(2xy$ $-5yz$ $+3zx\right)$ OMPOSITE MATHEMATICS
7th-9th grade
Algebra
Check solution
If $%$ $1$ $y,$ $Z$ and $/$ are $non-2er0$ real numbers and $x^{2}+5y^{2}+5z^{2}4$ $4w^{2}-4xy-4yz-4zw=0$ then x, $y,$ $Z$ are in
Other
Check solution
$∠$ $F$ From the sum $ot$ $x^{A}\left(2\right)-8$ with $3x-12$ subtract the sum $ofx-9$ with $3x-x^{A}\left(2\right)$ Multinlication takes place $\left(2\times A$ $\left(2\right)+5x+21\right)\left(x-$ $5\right)=$ #Please provide solution by using math formula.
10th-13th grade
Geometry
Check solution
3GIETUI $19:6xy-4y+6-9x$ 1
10th-13th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com