qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$9u-8v = 4$
$u = \dfrac { 8 } { 9 } v + \dfrac { 4 } { 9 }$
$ $ Solve a solution to $ u$
$9 u \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } = 4$
$ $ Move the rest of the expression except $ u $ term to the right side and replace the sign $ $
$9 u - 8 v \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } \right ) = 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } \right )$
$\color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } \right ) = 4 - \left ( - 8 v \right )$
$ $ Organize the expression $ $
$\color{#FF6800}{ 9 } \color{#FF6800}{ u } = 4 - \left ( - 8 v \right )$
$9 u = \color{#FF6800}{ 4 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } \right )$
$ $ Organize the expression $ $
$9 u = \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 9 } \color{#FF6800}{ u } = \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ u } = \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 9 }$
$u = \left ( 8 v + 4 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 9 }$
$ $ Convert division to multiplication $ $
$u = \left ( 8 v + 4 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } }$
$u = \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 9 }$
$u = \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } }$
$u = \color{#FF6800}{ 8 } \color{#FF6800}{ v } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } } + 4 \times \dfrac { 1 } { 9 }$
$ $ Simplify the expression $ $
$u = \color{#FF6800}{ \dfrac { 8 } { 9 } } \color{#FF6800}{ v } + 4 \times \dfrac { 1 } { 9 }$
$u = \dfrac { 8 } { 9 } v + \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 9 } }$
$ $ Calculate the product of rational numbers $ $
$u = \dfrac { 8 } { 9 } v + \color{#FF6800}{ \dfrac { 4 } { 9 } }$
$v = \dfrac { 9 } { 8 } u - \dfrac { 1 } { 2 }$
$ $ Solve a solution to $ v$
$\color{#FF6800}{ 9 } \color{#FF6800}{ u } - 8 v = 4$
$ $ Move the rest of the expression except $ v $ term to the right side and replace the sign $ $
$- 8 v = 4 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ u } \right )$
$- 8 v = \color{#FF6800}{ 4 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ u } \right )$
$ $ Organize the expression $ $
$- 8 v = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ v } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$ $ Change the sign of both sides of the equation $ $
$8 v = 9 u - 4$
$\color{#FF6800}{ 8 } \color{#FF6800}{ v } = \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ v } = \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 8 }$
$v = \left ( 9 u - 4 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 8 }$
$ $ Convert division to multiplication $ $
$v = \left ( 9 u - 4 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } }$
$v = \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 8 }$
$v = \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } }$
$v = \color{#FF6800}{ 9 } \color{#FF6800}{ u } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } } - 4 \times \dfrac { 1 } { 8 }$
$ $ Simplify the expression $ $
$v = \color{#FF6800}{ \dfrac { 9 } { 8 } } \color{#FF6800}{ u } - 4 \times \dfrac { 1 } { 8 }$
$v = \dfrac { 9 } { 8 } u \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 8 } }$
$ $ Calculate the product of rational numbers $ $
$v = \dfrac { 9 } { 8 } u \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
Solution search results
search-thumbnail-Find the value of $u$ in rectangle HIJK. 
$I$ 
$5w-33$ 
$H$ 
$\right)$ 
$9w-85$ 
$k$ 
$∪=$
10th-13th grade
Geometry
search-thumbnail-
$43$ $-19y-30$
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo