# Calculator search results

Formula
Expand the expression
Factorize the expression
$9a ^{ 2 } -12ab+15a ^{ 3 } b ^{ 2 } -24ab ^{ 3 }$
$15 a ^ { 3 } b ^ { 2 } + 9 a ^ { 2 } - 24 a b ^ { 3 } - 12 a b$
Organize polynomials
$\color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b }$
$3 a \left ( 5 a ^ { 2 } b ^ { 2 } + 3 a - 8 b ^ { 3 } - 4 b \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } }$
 Expand the expression 
$\color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b }$
$\color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b }$
 Tie a common factor 
$\color{#FF6800}{ 3 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ b } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture