Symbol

# Calculator search results

Formula
Calculate the value
Find the number of divisors
List all divisors
Do prime factorization
$98 ^{ 2 }$
$9604$
Calculate the value
$\color{#FF6800}{ 98 } ^ { \color{#FF6800}{ 2 } }$
 Calculate power 
$\color{#FF6800}{ 9604 }$
$15$
Find the number of divisors
$\color{#FF6800}{ 98 } ^ { 2 }$
 Represents an integer as a product of decimal numbers 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If the base consists of products of two or more numbers, change to the product of each power 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 Calculate the power of the power 
$2 ^ { 2 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 15 }$
$1 , 2 , 4 , 7 , 14 , 28 , 49 , 98 , 196 , 343 , 686 , 1372 , 2401 , 4802 , 9604$
Find all divisors
$\color{#FF6800}{ 98 } ^ { 2 }$
 Represents an integer as a product of decimal numbers 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If the base consists of products of two or more numbers, change to the product of each power 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 Calculate the power of the power 
$2 ^ { 2 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 7 } , \color{#FF6800}{ 14 } , \color{#FF6800}{ 28 } , \color{#FF6800}{ 49 } , \color{#FF6800}{ 98 } , \color{#FF6800}{ 196 } , \color{#FF6800}{ 343 } , \color{#FF6800}{ 686 } , \color{#FF6800}{ 1372 } , \color{#FF6800}{ 2401 } , \color{#FF6800}{ 4802 } , \color{#FF6800}{ 9604 }$
$2 ^ { 2 } \times 7 ^ { 4 }$
Organize using the law of exponent
$\color{#FF6800}{ 98 } ^ { 2 }$
 Represents an integer as a product of decimal numbers 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If the base consists of products of two or more numbers, change to the product of each power 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 ^ { 2 } \left ( \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 Calculate the power of the power 
$2 ^ { 2 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 4 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture