qanda-logo
search-icon
Symbol

Calculator search results

Do prime factorization
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
Rewrite a number
Answer
circle-check-icon
$2 ^ { 5 } \times 3$
Do prime factorization
$\color{#FF6800}{ 96 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$12$
Find the number of divisors
$\color{#FF6800}{ 96 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 12 }$
$1 , 2 , 3 , 4 , 6 , 8 , 12 , 16 , 24 , 32 , 48 , 96$
Find all divisors
$\color{#FF6800}{ 96 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 8 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 16 } , \color{#FF6800}{ 24 } , \color{#FF6800}{ 32 } , \color{#FF6800}{ 48 } , \color{#FF6800}{ 96 }$
$9.6 \times 10 ^ { 1 }$
Rewrite in the scientific numeral system
$\color{#FF6800}{ 96 }$
$ $ Rewrite in the scientific numeral system $ $
$\color{#FF6800}{ 9.6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } }$
Solution search results
search-thumbnail-(a) (\sqrt{7x}-3\sqrt{2)}(\sqrt{7}x+3\sqrt{2}) taclo
$SEcmON=$ 1 Answer the questions by choosing correct option. 1. Which of the following number is irrational? (a) 0.007 (b) v64 (c) (d) 0.125 2. What is the value of expression $1$ $1$ $slon\left(\left(125\right)i+\left(121\right)i\right)$ $15$ $\left(c\right)$ $16$ (d) 17 (a) 14 (b) 3. The expression $\left(7x^{2}-18\right)$ can be written in (a) $\left(\sqrt{7x} -3\sqrt{2\right)} \left(\sqrt{7} x+3\sqrt{2} \right)$ ((bd) ) $taclo$ $ma$ $\left(\sqrt{7x} -3\sqrt{2\right)} \left(\sqrt{7} x+3\sqrt{2} \right)$ $\left(7x-2\sqrt{3\right)} \left(7x+2\sqrt{3} \right)$ (c) $\left(7x-3\sqrt{2\right)} \left(\sqrt{7} x+3\sqrt{2} \right)$ What is the difference between the ordinates of the points $\left(-2.3\right)an9$ (5,8)? (a) 3 (b) 5 (c) 7 (d) 10 5. If the $x-coordinaθ$ as well as the Y coordinate of a point is negative, then this point lies in the (a) 1" quadrant (b) 2nd quadrant (c) 3d quadrant (d) 4th quadrant 6. $104\times 96=7$ (a) 9894 (b) 9984 (c) 9684 (d) 9884 7. An angle 15° is one fifth of Its supplement. The measure of the angle is: (a) (b) 30 (c) 75° (d) 150° 8. In the given =? figure, AB||CD.If $∠APQ=70^{0}and$ $∠PRD=120^{0}$ then 2QPR A P. B ((ca) ) 4500° ° ((bd) ) 6350° ° 70 120 9. $lna△ABC$ $\left(a\right)$ $32^{0}$ $1∠A-∠B=42^{0}$ $\left(b\right)$ $and∠B-∠c=21th0n$ $63^{0}$ $\left(c\right)$ 5L3B ° =? (d) 95° 10. In the given figure AB=AC and OB=OC then $∠AB0:∠Ac0=7$ ((ca) ) 11::2 1, (b) 2:1 None of these B 11. and A DEF. It is given that AB=DE and BC=EF. In order that order that $△ABCg△D$ ADEF, we must have - $lna△ABca$ $AB=DEan$ $\left(a\right)$ $=$ $\left(c\right)$ $∠c=$ $dBC=EF.ln$ $∠D$ $∠$ (b) LB = LE (d) None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture