Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$9-x ^{ 2 } -y ^{ 2 } +2xy$
$- x ^ { 2 } + 2 x y - y ^ { 2 } + 9$
Organize polynomials
$\color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 }$
$- \left ( x - y - 3 \right ) \left ( x - y + 3 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
 Factorize to use perfect square expression, and the sum and difference formula 
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( 3 - x + y \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( 3 - x + y \right )$
$\left ( x - y + 3 \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
 Organize the expression 
$\left ( x - y + 3 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$\left ( x - y + 3 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Bind the expressions with the common factor $- 1$
$\left ( x - y + 3 \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \right )$
 Sort the factors 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture