# Calculator search results

Formula
Multiply the numbers
Find the number of divisors
Do prime factorization
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$
$362880$
Multiply the numbers
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
 Multiplying any number by 1 does not change the value 
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
 Multiply $9$ and $8$
$\color{#FF6800}{ 72 } \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 72 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \times 6 \times 5 \times 4 \times 3 \times 2$
 Multiply $72$ and $7$
$\color{#FF6800}{ 504 } \times 6 \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 504 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \times 5 \times 4 \times 3 \times 2$
 Multiply $504$ and $6$
$\color{#FF6800}{ 3024 } \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 3024 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \times 4 \times 3 \times 2$
 Multiply $3024$ and $5$
$\color{#FF6800}{ 15120 } \times 4 \times 3 \times 2$
$\color{#FF6800}{ 15120 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \times 3 \times 2$
 Multiply $15120$ and $4$
$\color{#FF6800}{ 60480 } \times 3 \times 2$
$\color{#FF6800}{ 60480 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \times 2$
 Multiply $60480$ and $3$
$\color{#FF6800}{ 181440 } \times 2$
$\color{#FF6800}{ 181440 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Multiply $181440$ and $2$
$\color{#FF6800}{ 362880 }$
$160$
Find the number of divisors
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
 Multiplying any number by 1 does not change the value 
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Do prime factorization 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$3 ^ { 2 } \times \color{#FF6800}{ 3 } \times 3 \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { 2 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 2 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 Find the sum 
$3 ^ { \color{#FF6800}{ 4 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { 4 } \times 2 ^ { 3 } \times \color{#FF6800}{ 2 } \times 2 ^ { 2 } \times 2 \times 7 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 4 } \times 2 ^ { 3 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 2 } \times 2 \times 7 \times 5$
$3 ^ { 4 } \times 2 ^ { 3 } \times 2 ^ { 1 } \times 2 ^ { 2 } \times \color{#FF6800}{ 2 } \times 7 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 4 } \times 2 ^ { 3 } \times 2 ^ { 1 } \times 2 ^ { 2 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 7 \times 5$
$3 ^ { 4 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 7 \times 5$
 Add the exponent as the base is the same 
$3 ^ { 4 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 7 \times 5$
$3 ^ { 4 } \times 2 ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 7 \times 5$
 Find the sum 
$3 ^ { 4 } \times 2 ^ { \color{#FF6800}{ 7 } } \times 7 \times 5$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 7 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 160 }$
$3 ^ { 4 } \times 2 ^ { 7 } \times 7 \times 5$
Organize using the law of exponent
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \color{#FF6800}{ \times } \color{#FF6800}{ 1 }$
 Multiplying any number by 1 does not change the value 
$9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$\color{#FF6800}{ 9 } \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$3 ^ { 2 } \times \color{#FF6800}{ 8 } \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
 Represents an integer as a product of decimal numbers 
$3 ^ { 2 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$3 ^ { 2 } \times 2 ^ { 3 } \times 7 \times \color{#FF6800}{ 6 } \times 5 \times 4 \times 3 \times 2$
 Represents an integer as a product of decimal numbers 
$3 ^ { 2 } \times 2 ^ { 3 } \times 7 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 } \times 5 \times 4 \times 3 \times 2$
$3 ^ { 2 } \times 2 ^ { 3 } \times 7 \times 2 \times 3 \times 5 \times \color{#FF6800}{ 4 } \times 3 \times 2$
 Represents an integer as a product of decimal numbers 
$3 ^ { 2 } \times 2 ^ { 3 } \times 7 \times 2 \times 3 \times 5 \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times 3 \times 2$
$3 ^ { 2 } \times \color{#FF6800}{ 3 } \times 3 \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 2 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { 2 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 2 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
 Find the sum 
$3 ^ { \color{#FF6800}{ 4 } } \times 2 ^ { 3 } \times 7 \times 2 \times 5 \times 2 ^ { 2 } \times 2$
$3 ^ { 4 } \times 2 ^ { 3 } \times \color{#FF6800}{ 2 } \times 2 ^ { 2 } \times 2 \times 7 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 4 } \times 2 ^ { 3 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 ^ { 2 } \times 2 \times 7 \times 5$
$3 ^ { 4 } \times 2 ^ { 3 } \times 2 ^ { 1 } \times 2 ^ { 2 } \times \color{#FF6800}{ 2 } \times 7 \times 5$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 ^ { 4 } \times 2 ^ { 3 } \times 2 ^ { 1 } \times 2 ^ { 2 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 7 \times 5$
$3 ^ { 4 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 7 \times 5$
 Add the exponent as the base is the same 
$3 ^ { 4 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 7 \times 5$
$3 ^ { 4 } \times 2 ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 7 \times 5$
 Find the sum 
$3 ^ { 4 } \times 2 ^ { \color{#FF6800}{ 7 } } \times 7 \times 5$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture