# Calculator search results

Formula
Expand the expression
Factorize the expression
$9 \left( x+1 \right) -3 \left( x+1 \right) ^{ 2 }$
$- 3 x ^ { 2 } + 3 x + 6$
Organize polynomials
$\color{#FF6800}{ 9 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 3 \left ( x + 1 \right ) ^ { 2 }$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } + \color{#FF6800}{ 9 } - 3 \left ( x + 1 \right ) ^ { 2 }$
$9 x + 9 - 3 \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$9 x + 9 - 3 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$9 x + 9 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$9 x + 9 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } + \left ( 9 - 3 \right ) - 3 x ^ { 2 }$
 Arrange the constant term 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } + \left ( 9 - 3 \right ) - 3 x ^ { 2 }$
$3 x + \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - 3 x ^ { 2 }$
 Arrange the constant term 
$3 x + \color{#FF6800}{ 6 } - 3 x ^ { 2 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$- 3 \left ( x - 2 \right ) \left ( x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 9 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Bind the expressions with the common factor $- 3$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Sort the factors 
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results