# Calculator search results

Formula
Solve the equation
Graph
$y = 8 x - 15$
$y = 2 \left ( x + 6 \right )$
$x$Intercept
$\left ( \dfrac { 15 } { 8 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 15 \right )$
$x$Intercept
$\left ( - 6 , 0 \right )$
$y$Intercept
$\left ( 0 , 12 \right )$
$8x-15 = 2 \left( x+6 \right)$
$x = \dfrac { 9 } { 2 }$
 Solve a solution to $x$
$8 x - 15 = \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
 Multiply each term in parentheses by $2$
$8 x - 15 = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
$8 x - 15 = 2 x + \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
 Multiply $2$ and $6$
$8 x - 15 = 2 x + \color{#FF6800}{ 12 }$
$8 x - 15 = \color{#FF6800}{ 2 } \color{#FF6800}{ x } + 12$
 Move the variable to the left-hand side and change the symbol 
$8 x - 15 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 12$
$8 x \color{#FF6800}{ - } \color{#FF6800}{ 15 } - 2 x = 12$
 Move the constant to the right side and change the sign 
$8 x - 2 x = 12 \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } = 12 + 15$
 Organize the expression 
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } = 12 + 15$
$6 x = \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
 Add $12$ and $15$
$6 x = \color{#FF6800}{ 27 }$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } = \color{#FF6800}{ 27 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 9 } { 2 } }$
 그래프 보기 
Graph
Solution search results