# Calculator search results

Formula
Factorize the expression
$8x ^{ 2 } -24xy+18y ^{ 2 }$
$2 \left ( 2 x - 3 y \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 24 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
 Tie a common factor 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
$2 \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
 Use the factoring formula, $a^{2}-2ab + b^{2} = \left(a-b\right)^{2}$
$2 \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results