Symbol

Calculator search results

Formula
Calculate the value
Find the number of divisors
List all divisors
Do prime factorization
$8 ^{ 2 } \times 2$
$128$
Calculate the value
$\color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Simplify the expression 
$\color{#FF6800}{ 64 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 64 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Multiply $64$ and $2$
$\color{#FF6800}{ 128 }$
$8$
Find the number of divisors
$\color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$2 ^ { 6 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 6 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $6$ and $1$
$2 ^ { \color{#FF6800}{ 7 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 7 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 8 }$
$1 , 2 , 4 , 8 , 16 , 32 , 64 , 128$
Find all divisors
$\color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$2 ^ { 6 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 6 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $6$ and $1$
$2 ^ { \color{#FF6800}{ 7 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 7 } }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 7 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 7 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 8 } , \color{#FF6800}{ 16 } , \color{#FF6800}{ 32 } , \color{#FF6800}{ 64 } , \color{#FF6800}{ 128 }$
$2 ^ { 7 }$
Organize using the law of exponent
$\color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } \times 2$
 Do a factorization in prime factors until you can no longer factorize 
$\left ( 2 ^ { 3 } \right ) ^ { 2 } \times 2$
$\left ( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \times 2$
 Calculate the power of the power 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \times 2$
$2 ^ { 6 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 6 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $6$ and $1$
$2 ^ { \color{#FF6800}{ 7 } }$
Solution search results
$20$ times $20$