Symbol

# Calculator search results

Formula
Calculate the value
$8 \sqrt{ 2 } + \sqrt{ 45 } - \dfrac{ 12 }{ \sqrt{ 18 } } - \dfrac{ 14 }{ \sqrt{ 5 } }$
$\dfrac { 30 \sqrt{ 2 } + \sqrt{ 5 } } { 5 }$
Calculate the value
$8 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 45 } } - \dfrac { 12 } { \sqrt{ 18 } } - \dfrac { 14 } { \sqrt{ 5 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$8 \sqrt{ 2 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 12 } { \sqrt{ 18 } } - \dfrac { 14 } { \sqrt{ 5 } }$
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } - \color{#FF6800}{ \dfrac { 12 } { \sqrt{ 18 } } } - \dfrac { 14 } { \sqrt{ 5 } }$
 Calculate the expression 
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) - \dfrac { 14 } { \sqrt{ 5 } }$
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } \right ) - \dfrac { 14 } { \sqrt{ 5 } }$
 Get rid of unnecessary parentheses 
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } - \dfrac { 14 } { \sqrt{ 5 } }$
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } - 2 \sqrt{ 2 } - \color{#FF6800}{ \dfrac { 14 } { \sqrt{ 5 } } }$
 Calculate the expression 
$8 \sqrt{ 2 } + 3 \sqrt{ 5 } - 2 \sqrt{ 2 } - \color{#FF6800}{ \dfrac { 14 \sqrt{ 5 } } { 5 } }$
$\color{#FF6800}{ 8 } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } } - \dfrac { 14 \sqrt{ 5 } } { 5 }$
 Calculate between similar terms 
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 5 } - \dfrac { 14 \sqrt{ 5 } } { 5 }$
$6 \sqrt{ 2 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } - \dfrac { 14 \sqrt{ 5 } } { 5 }$
 Convert an equation to a fraction using $a=\dfrac{a}{1}$
$6 \sqrt{ 2 } + \color{#FF6800}{ \dfrac { 3 \sqrt{ 5 } } { 1 } } - \dfrac { 14 \sqrt{ 5 } } { 5 }$
$6 \sqrt{ 2 } + \color{#FF6800}{ \dfrac { 3 \sqrt{ 5 } } { 1 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 14 \sqrt{ 5 } } { 5 } }$
 Write all numerators above the least common denominator 
$6 \sqrt{ 2 } + \color{#FF6800}{ \dfrac { 15 \sqrt{ 5 } - 14 \sqrt{ 5 } } { 5 } }$
$6 \sqrt{ 2 } + \dfrac { \color{#FF6800}{ 15 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 14 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
 Calculate between similar terms 
$6 \sqrt{ 2 } + \dfrac { \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 5 } } } { 5 }$
$6 \sqrt{ 2 } + \dfrac { \color{#FF6800}{ 1 } \sqrt{ 5 } } { 5 }$
 Multiplying any number by 1 does not change the value 
$6 \sqrt{ 2 } + \dfrac { \sqrt{ 5 } } { 5 }$
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \sqrt{ 5 } } { 5 } }$
 Find the sum of the fractions 
$\color{#FF6800}{ \dfrac { 30 \sqrt{ 2 } + \sqrt{ 5 } } { 5 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture