Symbol

# Calculator search results

Formula
Solve the equation
Graph
$y = 8 \left ( \dfrac { x } { 2 } + \dfrac { 1 } { 4 } \right ) + 1$
$y = - 9 \left ( x - \dfrac { 1 } { 3 } \right ) + 4$
$x$Intercept
$\left ( - \dfrac { 3 } { 4 } , 0 \right )$
$y$Intercept
$\left ( 0 , 3 \right )$
$x$Intercept
$\left ( \dfrac { 7 } { 9 } , 0 \right )$
$y$Intercept
$\left ( 0 , 7 \right )$
$8 \left( \dfrac{ x }{ 2 } + \dfrac{ 1 }{ 4 } \right) +1 = -9 \left( x- \dfrac{ 1 }{ 3 } \right) +4$
$x = \dfrac { 4 } { 13 }$
 Solve a solution to $x$
$\color{#FF6800}{ 8 } \left ( \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 4 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Organize the expression 
$\color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { x } { 2 } } + 8 \times \dfrac { 1 } { 4 } + 1 = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
 Calculate the multiplication expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } + 8 \times \dfrac { 1 } { 4 } + 1 = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
$4 x + \color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 4 } } + 1 = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
 Calculate the product of rational numbers 
$4 x + \color{#FF6800}{ 2 } + 1 = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
$4 x + \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
 Add $2$ and $1$
$4 x + \color{#FF6800}{ 3 } = - 9 x - 9 \times \left ( - \dfrac { 1 } { 3 } \right ) + 4$
$4 x + 3 = - 9 x \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) + 4$
 Calculate the product of rational numbers 
$4 x + 3 = - 9 x + \color{#FF6800}{ 3 } + 4$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Organize the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } = \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } = 7 - 3$
 Organize the expression 
$\color{#FF6800}{ 13 } \color{#FF6800}{ x } = 7 - 3$
$13 x = \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Subtract $3$ from $7$
$13 x = \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 13 } \color{#FF6800}{ x } = \color{#FF6800}{ 4 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 4 } { 13 } }$
$x = \dfrac { 4 } { 13 }$
Solve the fractional equation
$\color{#FF6800}{ 8 } \left ( \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 1 } { 4 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ - } \color{#FF6800}{ 9 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Solve a solution to $x$
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 4 } { 13 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture