Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$7a- [ 3b- \{ a- \left( 4a-5b \right) \} ]$
$4 a + 2 b$
Organize polynomials
$7 a - \left ( 3 b - \left ( a \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$7 a - \left ( 3 b - \left ( a \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } + \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right )$
$7 a - \left ( 3 b - \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right )$
 Organize the similar terms 
$7 a - \left ( 3 b - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right )$
$7 a - \left ( 3 b - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ a } + 5 b \right ) \right )$
 Arrange the constant term 
$7 a - \left ( 3 b - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } + 5 b \right ) \right )$
$7 a - \left ( 3 b \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$7 a - \left ( 3 b + \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right )$
$7 a - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right )$
 Organize the similar terms 
$7 a - \left ( \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \right )$
$7 a - \left ( \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ b } + 3 a \right )$
 Arrange the constant term 
$7 a - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } + 3 a \right )$
$7 a - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \right )$
 Sort the polynomial expressions in descending order 
$7 a - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \right )$
$7 a \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$7 a \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } + \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\left ( \color{#FF6800}{ 7 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ a } + 2 b$
 Arrange the constant term 
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } + 2 b$
$2 \left ( 2 a + b \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 7 } \color{#FF6800}{ a } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ b } \right ) \right ) \right )$
 Expand the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b }$
 Tie a common factor 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture