Symbol

Calculator search results

Formula
Find the difference
$7 \dfrac{ 8 }{ 21 } -1 \dfrac{ 5 }{ 12 }$
$\dfrac { 167 } { 28 }$
Find the difference
$\color{#FF6800}{ 7 \dfrac { 8 } { 21 } } - 1 \dfrac { 5 } { 12 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 155 } { 21 } } - 1 \dfrac { 5 } { 12 }$
$\dfrac { 155 } { 21 } \color{#FF6800}{ - } \color{#FF6800}{ 1 \dfrac { 5 } { 12 } }$
 Convert mixed number into improper fraction 
$\dfrac { 155 } { 21 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 17 } { 12 } }$
$\dfrac { 155 } { \color{#FF6800}{ 21 } } - \dfrac { 17 } { \color{#FF6800}{ 12 } }$
 The smallest common multiple in denominator is $84$
$\dfrac { 155 } { \color{#FF6800}{ 21 } } - \dfrac { 17 } { \color{#FF6800}{ 12 } }$
$\dfrac { 155 } { 21 } - \dfrac { 17 } { 12 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 155 \times \color{#FF6800}{ 4 } } { 21 \times \color{#FF6800}{ 4 } } - \dfrac { 17 \times \color{#FF6800}{ 7 } } { 12 \times \color{#FF6800}{ 7 } }$
$\color{#FF6800}{ \dfrac { 155 \times 4 } { 21 \times 4 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 17 \times 7 } { 12 \times 7 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 620 } { 84 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 119 } { 84 } }$
$\color{#FF6800}{ \dfrac { 620 } { 84 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 119 } { 84 } }$
 Since the denominator is the same as $84$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 620 - 119 } { 84 } }$
$\dfrac { \color{#FF6800}{ 620 } \color{#FF6800}{ - } \color{#FF6800}{ 119 } } { 84 }$
 Subtract $119$ from $620$
$\dfrac { \color{#FF6800}{ 501 } } { 84 }$
$\color{#FF6800}{ \dfrac { 501 } { 84 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 167 } { 28 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture