# Calculator search results

Formula
Find the sum or difference of the fractions
$7 \dfrac{ 1 }{ 12 } -3 \dfrac{ 3 }{ 4 } -1 \dfrac{ 5 }{ 6 }$
$\dfrac { 3 } { 2 }$
Find the sum or difference of the fractions
$\color{#FF6800}{ 7 \dfrac { 1 } { 12 } } - 3 \dfrac { 3 } { 4 } - 1 \dfrac { 5 } { 6 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 85 } { 12 } } - 3 \dfrac { 3 } { 4 } - 1 \dfrac { 5 } { 6 }$
$\dfrac { 85 } { 12 } \color{#FF6800}{ - } \color{#FF6800}{ 3 \dfrac { 3 } { 4 } } - 1 \dfrac { 5 } { 6 }$
 Convert mixed number into improper fraction 
$\dfrac { 85 } { 12 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 15 } { 4 } } - 1 \dfrac { 5 } { 6 }$
$\dfrac { 85 } { 12 } - \dfrac { 15 } { 4 } \color{#FF6800}{ - } \color{#FF6800}{ 1 \dfrac { 5 } { 6 } }$
 Convert mixed number into improper fraction 
$\dfrac { 85 } { 12 } - \dfrac { 15 } { 4 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 11 } { 6 } }$
$\dfrac { 85 } { \color{#FF6800}{ 12 } } - \dfrac { 15 } { \color{#FF6800}{ 4 } } - \dfrac { 11 } { \color{#FF6800}{ 6 } }$
 The smallest common multiple in denominator is $12$
$\dfrac { 85 } { \color{#FF6800}{ 12 } } - \dfrac { 15 } { \color{#FF6800}{ 4 } } - \dfrac { 11 } { \color{#FF6800}{ 6 } }$
$\dfrac { 85 } { 12 } - \dfrac { 15 } { 4 } - \dfrac { 11 } { 6 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 85 } { 12 } - \dfrac { 15 \times \color{#FF6800}{ 3 } } { 4 \times \color{#FF6800}{ 3 } } - \dfrac { 11 \times \color{#FF6800}{ 2 } } { 6 \times \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ \dfrac { 85 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 15 \times 3 } { 4 \times 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 11 \times 2 } { 6 \times 2 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 85 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 45 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 22 } { 12 } }$
$\color{#FF6800}{ \dfrac { 85 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 45 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 22 } { 12 } }$
 Since the denominator is the same as $12$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 85 - 45 - 22 } { 12 } }$
$\dfrac { \color{#FF6800}{ 85 } \color{#FF6800}{ - } \color{#FF6800}{ 45 } \color{#FF6800}{ - } \color{#FF6800}{ 22 } } { 12 }$
 Calculate the sum or the difference 
$\dfrac { \color{#FF6800}{ 18 } } { 12 }$
$\color{#FF6800}{ \dfrac { 18 } { 12 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 3 } { 2 } }$
Solution search results