# Calculator search results

Formula
Solve the equation
Graph
$6 x - 12 y = 48$
$x$Intercept
$\left ( 8 , 0 \right )$
$y$Intercept
$\left ( 0 , - 4 \right )$
$6x-12y = 48$
$x = 2 y + 8$
 Solve a solution to $x$
$6 x \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } = 48$
 Move the rest of the expression except $x$ term to the right side and replace the sign 
$6 x - 12 y \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \right ) = 48 \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \right )$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \right ) = 48 - \left ( - 12 y \right )$
 Organize the expression 
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } = 48 - \left ( - 12 y \right )$
$6 x = \color{#FF6800}{ 48 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \right )$
 Organize the expression 
$6 x = \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 48 }$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } = \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 48 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 48 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 6 }$
$x = \left ( 12 y + 48 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 6 }$
 Convert division to multiplication 
$x = \left ( 12 y + 48 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } }$
$x = \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 48 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } }$
 Multiply each term in parentheses by $\dfrac { 1 } { 6 }$
$x = \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 48 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } }$
$x = \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } } + 48 \times \dfrac { 1 } { 6 }$
 Simplify the expression 
$x = \color{#FF6800}{ 2 } \color{#FF6800}{ y } + 48 \times \dfrac { 1 } { 6 }$
$x = 2 y + \color{#FF6800}{ 48 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 6 } }$
 Calculate the product of rational numbers 
$x = 2 y + \color{#FF6800}{ 8 }$
$y = \dfrac { 1 } { 2 } x - 4$
 Solve a solution to $y$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } - 12 y = 48$
 Move the rest of the expression except $y$ term to the right side and replace the sign 
$- 12 y = 48 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
$- 12 y = \color{#FF6800}{ 48 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
 Organize the expression 
$- 12 y = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 48 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 48 }$
 Change the sign of both sides of the equation 
$12 y = 6 x - 48$
$\color{#FF6800}{ 12 } \color{#FF6800}{ y } = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 48 }$
 Divide both sides by the same number 
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 48 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 12 }$
$y = \left ( 6 x - 48 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 12 }$
 Convert division to multiplication 
$y = \left ( 6 x - 48 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } }$
$y = \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 48 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } }$
 Multiply each term in parentheses by $\dfrac { 1 } { 12 }$
$y = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } \color{#FF6800}{ - } \color{#FF6800}{ 48 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } }$
$y = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } } - 48 \times \dfrac { 1 } { 12 }$
 Simplify the expression 
$y = \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } - 48 \times \dfrac { 1 } { 12 }$
$y = \dfrac { 1 } { 2 } x \color{#FF6800}{ - } \color{#FF6800}{ 48 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 12 } }$
 Calculate the product of rational numbers 
$y = \dfrac { 1 } { 2 } x \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 그래프 보기 
Linear function
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture