Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$64x-x ^{ 4 }$
$- x ^ { 4 } + 64 x$
Organize polynomials
$\color{#FF6800}{ 64 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 64 } \color{#FF6800}{ x }$
$- x \left ( x - 4 \right ) \left ( x ^ { 2 } + 4 x + 16 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 64 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } }$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 64 } \color{#FF6800}{ x }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 64 } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $- x$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 64 } \right )$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 64 } \right )$
 Sort the factors 
$\color{#FF6800}{ - } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right )$
Solution search results
$64x^{2}-9=0$