Calculator search results

Formula
Multiply two numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
$60 \times 10$
$600$
Multiply two numbers
$\color{#FF6800}{ 60 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 }$
$ $ Multiply $ 60 $ and $ 10$
$\color{#FF6800}{ 600 }$
$24$
Find the number of divisors
$\color{#FF6800}{ 60 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$2 ^ { 2 } \times \color{#FF6800}{ 2 } \times 3 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$2 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$ $ Add $ 2 $ and $ 1$
$2 ^ { \color{#FF6800}{ 3 } } \times 3 \times 5 \times 5$
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 3 } \times 3 \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 3 } \times 3 \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 3 } \times 3 \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 3 } \times 3 \times 5 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 24 }$
$2 ^ { 3 } \times 3 \times 5 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 60 } \times 10$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 3 } \times \color{#FF6800}{ 5 } \times 10$
$2 ^ { 2 } \times 3 \times 5 \times \color{#FF6800}{ 10 }$
$ $ Represents an integer as a product of decimal numbers $ $
$2 ^ { 2 } \times 3 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 }$
$2 ^ { 2 } \times \color{#FF6800}{ 2 } \times 3 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 2 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$2 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 3 \times 5 \times 5$
$ $ Add $ 2 $ and $ 1$
$2 ^ { \color{#FF6800}{ 3 } } \times 3 \times 5 \times 5$
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 3 } \times 3 \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 3 } \times 3 \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 3 } \times 3 \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 3 } \times 3 \times 5 ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-.Complete the following: 
$\left(1\right)$ $6$ 6 times $16=6$ times $10+6$ times 
(ii) $7$ times $14=70+7$ times 
$\left($ $ii1$ $3$ times $12=30+$ 
$\left($ $iv\right)$ $5$ times $15=504$ 
$\left($ $V$ $8$ times $18=80+$ 
. Find the answers:
10th-13th grade
Other
search-thumbnail-$2$ 
$6$ times $16=6$ times $10+6$ times 
$7$ times $14=70+7$ 70+7times 
$3$ 3times $12=30+$ 
$5$ times $15=50+$ 
0 $8$ 8 times $18=80+$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo